A Wilson Group of Non-uniformly Exponential Growth
نویسنده
چکیده
This note constructs a finitely generated group W whose wordgrowth is exponential, but for which the infimum of the growth rates over all finite generating sets is 1 — in other words, of non-uniformly exponential growth. This answers a question by Mikhael Gromov [Gro81]. The construction also yields a group of intermediate growth V that locally resembles W in that (by changing the generating set of W ) there are isomorphic balls of arbitrarily large radius in V and W ’s Cayley graphs.
منابع مشابه
The entropy of solvable groups
We prove that any finitely generated solvable group of zero entropy contains a nilpotent subgroup of finite index. In particular, any finitely generated solvable group of exponential growth is of uniformly exponential growth.
متن کاملUniform Growth of Polycyclic Groups
The Milnor-Wolf Theorem characterizes the finitely generated solvable groups which have exponential growth; a finitely generated solvable group has exponential growth iff it is not virtually nilpotent. Wolf showed that a finitely generated nilpotent by finite group has polynomial growth; then extended this by proving that polycyclic groups which are not virtually nilpotent have expontial growth...
متن کاملUniform growth of groups acting on Cartan-Hadamard spaces
We say that Γ has uniform exponential growth if Ent Γ > 0. In [11], remarque 5.12, M. Gromov raised the question whether exponential growth always implies uniform exponential growth. The answer is negative, indeed, in [14] J.S. Wilson gave examples of finitely generated groups of exponential growth and non uniform exponential growth. Nevertheless, exponential growth implies uniform exponential ...
متن کاملUniform Non–amenability of Free Burnside Groups
The aim of the present note is to show that free Burnside groups of sufficiently large odd exponent are non–amenable in a certain strong sense, more precisely, their left regular representations are isolated from the trivial representation uniformly on finite generating sets. This result is applied to the solution of a strong version of the von Neumann – Day problem concerning amenability of gr...
متن کاملConstruction of strict Lyapunov function for nonlinear parameterised perturbed systems
In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003